Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 241: 107679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447765

RESUMO

The search for mechanism-based anti-inflammatory therapies is of fundamental importance to avoid undesired off-target effects. Phospholipase A2 (PLA2) activity is a potential molecular target for anti-inflammatory drugs because it fuels arachidonic acid needed to synthesize inflammation mediators, such as prostaglandins. Herein, we aim to investigate the molecular mechanism by which ß-keto amyrin isolated from a methanolic extract of Cryptostegia grandiflora R. Br. Leaves can inhibit inflammation caused by Daboia russellii viper (DR) venom that mainly contains PLA2. We found that ß-keto amyrin neutralizes DR venom-induced paw-edema in a mouse model. Molecular docking of PLA2 with ß-keto amyrin complex resulted in a higher binding energy score of -8.86 kcal/mol and an inhibition constant of 611.7 nM. Diclofenac had a binding energy of -7.04 kcal/mol and an IC50 value of 620 nM, which predicts a poorer binding interaction than ß-keto amyrin. The higher conformational stability of ß-keto amyrin interaction compared to diclofenac is confirmed by molecular dynamics simulation. ß-keto amyrin isolated from C. grandiflora inhibits the PLA2 activity contained in Daboia russellii viper venom. The anti-inflammatory property of ß-keto amyrin is due to its direct binding into the active site of PLA2, thus inhibiting its enzyme activity.


Assuntos
Apocynaceae , Víbora de Russell , Inflamação , Ácido Oleanólico , Venenos de Víboras , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Apocynaceae/química , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Simulação de Acoplamento Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Venenos de Víboras/química , Venenos de Víboras/toxicidade
2.
Biomed Pharmacother ; 148: 112766, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35247716

RESUMO

Bothrops leucurus is responsible for most cases of snakebite in Northeast Brazil; however, this species is not included in the pool of venoms used in antivenom production in Brazil. The serotherapy has logistical and effectiveness limitations, which stimulates the search for therapeutic alternatives. Chlorogenic acid and rosmarinic acid present several biological activities, but their antiophidic potential has been poorly explored. Thus, the aim of this approach was to evaluate the potential inhibitory effects of these compounds on B. leucurus venom. Initially, the enzymatic inhibition of toxins was evaluated in vitro. Then, anti-hemorrhagic, anti-myotoxic, and anti-edematogenic assays were performed in vivo, as well analysis of several biochemical markers and hemostatic parameters. In addition, the interaction of inhibitors with SVMP and PLA2 was investigated by docking analysis. Results revealed that compounds inhibited in vitro the enzymatic activities and venom-induced edema, with a decrease in both myeloperoxidase and interleukin quantification. The inhibitors also attenuated the hemorrhagic and myotoxic actions and mitigated changes in serum biochemical and hemostatic markers, as well as decreased lipid peroxidation in liver and kidney tissues. Docking analysis revealed attractive interactions of both inhibitors with the zinc-binding site of SVMP and, in the case of PLA2, chlorogenic acid showed a similar inhibition mechanism to that described for rosmarinic acid. The results evidenced the antiophidic potential of both compounds, which showed higher efficiency than antivenom serum. Thus, both inhibitors are promising candidates for future adjuvants to be used to complement antivenom serotherapy.


Assuntos
Bothrops , Ácido Clorogênico/farmacologia , Cinamatos/farmacologia , Venenos de Crotalídeos/toxicidade , Depsídeos/farmacologia , Animais , Biomarcadores , Feminino , Testes Hematológicos , Interleucinas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Metaloproteases/efeitos dos fármacos , Camundongos , Peroxidase/efeitos dos fármacos , Fosfolipases A2/efeitos dos fármacos
3.
Acta Pharmacol Sin ; 43(3): 552-562, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935286

RESUMO

We previously show that fatty acid-binding protein 3 (FABP3) triggers α-synuclein (Syn) accumulation and induces dopamine neuronal cell death in Parkinson disease mouse model. But the role of fatty acid-binding protein 7 (FABP7) in the brain remains unclear. In this study we investigated whether FABP7 was involved in synucleinopathies. We showed that FABP7 was co-localized and formed a complex with Syn in Syn-transfected U251 human glioblastoma cells, and treatment with arachidonic acid (100 M) significantly promoted FABP7-induced Syn aggregation, which was associated with cell death. We demonstrated that synthetic FABP7 ligand 6 displayed a high affinity against FABP7 with Kd value of 209 nM assessed in 8-anilinonaphthalene-1-sulfonic acid (ANS) assay; ligand 6 improved U251 cell survival via disrupting the FABP7-Syn interaction. We showed that activation of phospholipase A2 (PLA2) by psychosine (10 M) triggered oligomerization of endogenous Syn and FABP7, and induced cell death in both KG-1C human oligodendroglia cells and oligodendrocyte precursor cells (OPCs). FABP7 ligand 6 (1 M) significantly decreased Syn oligomerization and aggregation thereby prevented KG-1C and OPC cell death. This study demonstrates that FABP7 triggers α-synuclein oligomerization through oxidative stress, while FABP7 ligand 6 can inhibit FABP7-induced Syn oligomerization and aggregation, thereby rescuing glial cells and oligodendrocytes from cell death.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Estresse Oxidativo/fisiologia , alfa-Sinucleína/metabolismo , Animais , Ácido Araquidônico/farmacologia , Morte Celular/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fosfolipases A2/efeitos dos fármacos , Ligação Proteica/fisiologia , Psicosina/farmacologia
4.
Sci Rep ; 11(1): 3511, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568685

RESUMO

The mechanism underlying bee venom (BV) therapy is still controversial, with opinions ranging from constituent-based pharmacological action to homeopathic-like activity. The purpose of this study was to examine whether BV phospholipase A2 (bvPLA2), an enzymatic component of BV, is a novel anti-inflammatory and anti-arthritic mediator capable of stimulating CD25+ Foxp3+ regulatory T cell (Treg) polarization in a mouse model of human rheumatoid arthritis (RA). An experimental model of RA was established in male DBA/1 mouse by 2-week-interval injections of 100 µg type II collagen emulsified in complete (first injection) or incomplete Freund's adjuvant (second injection) at the base of the tail. During arthritis development, bvPLA2 (0.1, 0.5, 1.0 mg/kg) and/or Treg inhibitors such as anti-CD25 antibodies and peptide 60 (P60) were injected intraperitoneally for 5 weeks. Arthritic symptoms and the expansion of Tregs were then assessed by behavioral assessments, histological and micro-CT imaging, and flow cytometry. bvPLA2 injections significantly alleviated arthritic behaviors such as squeaking and joint swelling, consistent with changes seen on both histological and micro-CT images. The anti-arthritic effects of bvPLA2 were blocked by intraperitoneal injections of 0.25 mg/kg anti-CD25 antibody and 10 µg/kg P60, as determined by behavioral assessments. Flow cytometric analysis of dendritic cells, B cells, and major T cell subsets from spleens revealed a significant depletion of Tregs following anti-CD25 antibody, but not P60, treatment. bvPLA2 treatment exerted significant anti-inflammatory and anti-arthritic activities in a mouse model of RA via the induction of Tregs.


Assuntos
Anti-Inflamatórios/farmacologia , Venenos de Abelha/farmacologia , Fatores de Transcrição Forkhead/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos Endogâmicos DBA , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Linfócitos T Reguladores/imunologia
5.
Pharm Biol ; 58(1): 1069-1076, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33164620

RESUMO

CONTEXT: Schumanniophyton magnificum Harms (Rubiaceae) is used traditionally in Nigeria for the treatment of snake bites. Snake venom contains phospholipase A2 (PLA2) which plays a key role in causing inflammation and pain. OBJECTIVE: To assess the anti-inflammatory effect of the methanol extract of Schumanniophyton magnificum (MESM) leaves through the inhibition of PLA2 and investigate the compounds responsible for the effect. MATERIALS AND METHODS: PLA2-inhibitory activity of MESM was assessed at concentrations of 0.1-0.8 mg/mL using human red blood cells as substrate. Prednisolone was used as the standard control. MESM was subsequently partitioned using n-hexane, dichloromethane, ethyl acetate and aqueous-methanol (90:10 v/v), after which PLA2-inhibitory activity of the partitions was determined. The best partition was subjected to chromatographic techniques and the fractions obtained were assessed for PLA2 inhibition at 0.4 mg/mL. Compounds in the most active fraction were determined using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS). RESULTS: MESM significantly inhibited PLA2 activity at 0.8 mg/mL (44.253%) compared to prednisolone (35.207%). n-Hexane partition (SMP1) proved more active with inhibition of 55.870% observed at 0.1 mg/mL. Fraction 1 (SMF1) showed the highest PLA2-inhibitory activity of 58.117%. FTIR studies revealed the presence of some functional groups in SMF1, and GC-MS confirmed the presence of 9 compounds which are first reported in this plant. Hexadecanoic acid, ethyl ester was identified as the major compound (24.906%). DISCUSSION AND CONCLUSIONS: The PLA2-inhibitory activity of MESM suggests that its compounds may be explored further in monitoring anti-inflammatory genes affected by the venoms.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Extratos Vegetais/farmacologia , Rubiaceae/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Bioensaio , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Inibidores de Fosfolipase A2/administração & dosagem , Inibidores de Fosfolipase A2/isolamento & purificação , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Extratos Vegetais/administração & dosagem , Folhas de Planta , Prednisolona/farmacologia
6.
Int J Biol Macromol ; 165(Pt A): 1066-1078, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035526

RESUMO

Medicinal plants have always been used for snakebite treatment by traditional healers but they lack scientific evidence of action. However secondary metabolites of such plants have been explored and found to inhibit the toxic effect of venom proteins. Literature survey from 2003 to 2019 resulted in identification of 251 secondary metabolites with such properties. In silico docking studies of these metabolites with modelled structure of Daboxin P, a PLA2 from Indian Daboia russelii revealed that butein, mimosine and bakuchiol bind to Daboxin P with high affinity. Butein interacted with the catalytic triad but mimosine and bakuchiol interacted with the Ca2+ binding residues of Daboxin P. In vitro validation showed that the molecules inhibited the sPLA2 activity of Daboxin P. Interestingly, mimosine and bakuchiol could also neutralize the anti-coagulatory activity of Daboxin P. Further, it was observed that butein and mimosine could neutralize the PLA2 activity of Indian big four venoms dose dependently. On the other hand, mimosine and bakuchiol could also neutralize the pro/anti-coagulatory effect of big four crude venom. Thus, in this study, three molecules have been identified which can neutralize the PLA2 activity and pro/anti-coagulatory effect of Daboxin P as well as crude venom of big four.


Assuntos
Inibidores de Fosfolipase A2/isolamento & purificação , Fosfolipases A2/química , Plantas Medicinais/química , Mordeduras de Serpentes/tratamento farmacológico , Animais , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Inibidores de Fosfolipase A2/química , Inibidores de Fosfolipase A2/metabolismo , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/genética , Metabolismo Secundário/genética , Mordeduras de Serpentes/genética , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/química
7.
Am J Respir Cell Mol Biol ; 63(3): 327-337, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32348683

RESUMO

No in vivo data are available regarding the effect of meconium on human surfactant in the early stages of severe meconium aspiration syndrome (MAS). In the present study, we sought to characterize the changes in surfactant composition, function, and structure during the early phase of meconium injury. We designed a translational prospective cohort study of nonbronchoscopic BAL of neonates with severe MAS (n = 14) or no lung disease (n = 18). Surfactant lipids were analyzed by liquid chromatography-high-resolution mass spectrometry. Secretory phospholipase A2 subtypes IB, V, and X and SP-A (surfactant protein A) were assayed by ELISA. SP-B and SP-C were analyzed by Western blotting under both nonreducing and reducing conditions. Surfactant function was assessed by adsorption test and captive bubble surfactometry, and lung aeration was evaluated by semiquantitative lung ultrasound. Surfactant nanostructure was studied using cryo-EM and atomic force microscopy. Several changes in phospholipid subclasses were detected during MAS. Lysophosphatidylcholine species released by phospholipase A2 hydrolysis were increased. SP-B and SP-C were significantly increased together with some shorter immature forms of SP-B. Surfactant function was impaired and correlated with poor lung aeration. Surfactant nanostructure was significantly damaged in terms of vesicle size, tridimensional complexity, and compactness. Various alterations of surfactant phospholipids and proteins were detected in the early phase of severe meconium aspiration and were due to hydrolysis and inflammation and a defensive response. This impairs both surfactant structure and function, finally resulting in reduced lung aeration. These findings support the development of new surfactant protection and antiinflammatory strategies for severe MAS.


Assuntos
Pulmão/efeitos dos fármacos , Síndrome de Aspiração de Mecônio/tratamento farmacológico , Surfactantes Pulmonares/farmacologia , Tensoativos/farmacologia , Anti-Inflamatórios/farmacologia , Humanos , Recém-Nascido , Pulmão/metabolismo , Síndrome de Aspiração de Mecônio/metabolismo , Síndrome de Aspiração de Mecônio/fisiopatologia , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo , Surfactantes Pulmonares/metabolismo
8.
J Thromb Thrombolysis ; 48(2): 256-262, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31124031

RESUMO

The Mojave rattlesnake is a unique species of pit viper that expresses either a highly potent phospholipase A2 (PLA2)-dependent neurotoxin containing venom nearly devoid of fibrinogenolytic metalloproteinases (venom type A) or a hemotoxic venom with a high percentage of metalloproteinases and PLA2 without any neurotoxin present (venom type B) depending on its geographical location in the Southwestern United States and Mexico. Given that PLA2 have been demonstrated to affect coagulation, it was hypothesized that the anticoagulant effects of both type A and B venoms could be assessed by thrombelastography, and determination made if these venoms were heme modulated. Both venom types were exposed to carbon monoxide releasing molecule-2 or its inactivated molecule (0 or 100 µM) in isolation and then placed in human plasma with consequent coagulation kinetics assessed by thrombelastography. It was determined that type A venom was twice as potent as an anticoagulant compared to type B venom, and that both venoms were inhibited by carbon monoxide releasing molecule-2 but not its inactivated molecule. Given the lack of proteolytic activity of type A venom and the dependence of neurotoxicity on PLA2 activity, it may be possible that carbon monoxide could inhibit neurotoxicity based on inhibition of PLA2 anticoagulant activity. These data may serve as the rationale for extension of these observations into animal models to determine if CO may inhibit not just hemotoxic venom, but also PLA2-dependent neurotoxic venom.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Monóxido de Carbono/farmacologia , Venenos de Crotalídeos/farmacologia , Animais , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/química , Venenos de Crotalídeos/classificação , Humanos , Metaloproteases/efeitos dos fármacos , Neurotoxinas/antagonistas & inibidores , Compostos Organometálicos/farmacologia , Fosfolipases A2/efeitos dos fármacos , Tromboelastografia
9.
ACS Chem Biol ; 14(2): 164-169, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30620559

RESUMO

Phospholipase A2, group XVI (PLA2G16) is a thiol hydrolase from the HRASLS family that regulates lipolysis in adipose tissue and has been identified as a host factor enabling the cellular entry of picornaviruses. Chemical tools are essential to visualize and control PLA2G16 activity, but they have not been reported to date. Here, we show that MB064, which is a fluorescent lipase probe, also labels recombinant and endogenously expressed PLA2G16. Competitive activity-based protein profiling (ABPP) using MB064 enabled the discovery of α-ketoamides as the first selective PLA2G16 inhibitors. LEI110 was identified as a potent PLA2G16 inhibitor ( Ki = 20 nM) that reduces cellular arachidonic acid levels and oleic acid-induced lipolysis in human HepG2 cells. Gel-based ABPP and chemical proteomics showed that LEI110 is a selective pan-inhibitor of the HRASLS family of thiol hydrolases (i.e., PLA2G16, HRASLS2, RARRES3 and iNAT). Molecular dynamic simulations of LEI110 in the reported crystal structure of PLA2G16 provided insight in the potential ligand-protein interactions to explain its binding mode. In conclusion, we have developed the first selective inhibitor that can be used to study the cellular role of PLA2G16.


Assuntos
Amidas/química , Inibidores Enzimáticos/farmacologia , Fosfolipases A2/efeitos dos fármacos , Proteínas/química , Animais , Inibidores Enzimáticos/química , Humanos
10.
J Thromb Thrombolysis ; 47(1): 73-79, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30374703

RESUMO

Snake venom contains a myriad of classes of enzyme which have been investigated for medicinal and toxinological purposes, including phospholipase A2 (PLA2), which is responsible for anticoagulant, myotoxic and neurotoxic effects. Given the importance of PLA2, the purposes of the present investigation were to characterize the coagulation kinetic behavior of a PLA2 purified from Crotalus adamanteus venom (Ca-PLA2) in human plasma with thrombelastography and determine if carbon monoxide could inhibit its activity. Coagulation kinetics were determined in human plasma with a range of Ca-PLA2 activity (0-2 U/ml) via thrombelastography. Then, using carbon monoxide releasing molecule-2 or its inactivated molecule (0 or 100 µM), the vulnerability of Ca-PLA2 activity to carbon monoxide mediated inhibition was assessed. Lastly, the inhibitory response of Ca-PLA2 activity to exposure to carbon monoxide releasing molecule-2 (0-100 µM) was determined. Ca-PLA2 activity degraded the velocity of clot growth and clot strength in an activity dependent, exponential manner. Carbon monoxide inhibited Ca-PLA2 activity in a concentration dependent fashion, with loss of detectable activity at 100 µM of carbon monoxide releasing molecule-2. These findings, while preliminary, open the possibility that other PLA2 contained in snake venom with multiple toxicities (e.g., myotoxin, neurotoxin) may be heme bearing and CO-inhibitable, which have profound potential basic and clinical science implications.


Assuntos
Monóxido de Carbono/farmacologia , Venenos de Crotalídeos/toxicidade , Inibidores de Fosfolipase A2 , Fosfolipases A2/efeitos dos fármacos , Animais , Anticoagulantes/toxicidade , Coagulação Sanguínea/efeitos dos fármacos , Crotalus , Humanos , Cinética , Tromboelastografia
11.
Biomed Res Int ; 2018: 1542602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175115

RESUMO

The aim of this study was to evaluate the antioxidant, the anti-inflammatory, and the antitumoral activities of the aqueous ethanolic extract from Phoenix dactylifera L. parthenocarpic dates. The antioxidant activity was carried using DPPH radical scavenging activity. The result showed that parthenocarpic dates had strongly scavenging activity on DPPH reaching 94% with an IC50 value of 0.15 ± 0.011 mg/mL (p < 0.05). The anti-inflammatory potential was determined by the inhibitory effect of the aqueous ethanolic extract on phospholipase A2 activity as well as on carrageenan-induced paw oedema in mice. The in vitro study showed that the extract inhibited the phospholipase A2 activity with an IC50 value of 130 µg/mL and the in vivo study showed a significantly decrease in the paw oedema after 1 h compared to the control group. Finally, the antiproliferative activity of the aqueous ethanolic extract was assessed by MTT test against MCF-7 and MDA-MB-231 cancer cell lines. This extract was effective in inhibiting MDA-MB-231 and MCF-7 cancer cells growth with IC50 values of 8 and 18 mg/mL, respectively, after 72 h treatment. These results confirm the ethnopharmacological significance of Phoenix dactylifera L. parthenocarpic dates, which could add support for its pharmaceutical use.


Assuntos
Anti-Inflamatórios/farmacologia , Phoeniceae , Extratos Vegetais/farmacologia , Animais , Antioxidantes , Etanol , Camundongos , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Células Tumorais Cultivadas
12.
PLoS One ; 12(11): e0187217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095858

RESUMO

Krabbe disease is a fatal rare inherited lipid storage disorder affecting 1:100,000 births. This illness is caused by mutations in the galc gene encoding for the enzyme galactosylceramidase (GALC). Dysfunction of GALC has been linked to the toxic build-up of the galactolipid, galactosylsphingosine (psychosine), which induces cell death of oligodendrocytes. Previous studies show that phospholipase A2 (PLA2) may play a role in psychosine induce cell death. Here, we demonstrate that non-selective inhibition of cPLA2/sPLA2 and selective inhibition of cPLA2, but not sPLA2, also attenuates psychosine-induced cell death of human astrocytes. This study shows that extracellular calcium is required for psychosine induced cell death, but intracellular calcium release, reactive oxygen species or release of soluble factors are not involved. These findings suggest a cell autonomous effect, at least in human astrocytes. Supporting a role for PLA2 in psychosine-induced cell death of oligodendrocytes and astrocytes, the results show inhibition of PLA2 attenuates psychosine-induced decrease in the expression of astrocyte marker vimentin as well as myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and the neuronal marker SMI-32 in organotypic slice cultures. These findings provide further mechanistic details of psychosine-induced death of glia and suggest a role for PLA2 in the process. This work also supports the proposal that novel drugs for Krabbe disease may require testing on astrocytes as well as oligodendrocytes for more holistic prediction of pre-clinical and clinical efficacy.


Assuntos
Astrócitos/fisiologia , Doenças Desmielinizantes , Neurônios/patologia , Fosfolipases A2/fisiologia , Psicosina/fisiologia , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Fosfolipases A2/efeitos dos fármacos
13.
J Nat Prod ; 80(10): 2741-2750, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29019677

RESUMO

TRPM2 is a Ca2+-permeable, nonselective cation channel that plays a role in oxidant-induced cell death, insulin secretion, and cytokine release. Few TRPM2 inhibitors have been reported, which hampers the validation of TRPM2 as a drug target. While screening our in-house marine-derived chemical library, we identified scalaradial and 12-deacetylscalaradial as the active components within an extract of an undescribed species of Cacospongia (class Demospongiae, family Thorectidae) that strongly inhibited TRPM2-mediated Ca2+ influx in TRPM2-overexpressing HEK293 cells. In whole-cell patch-clamp experiments, scalaradial (and similarly 12-deacetylscalaradial) inhibited TRPM2-mediated currents in a concentration- and time-dependent manner (∼20 min to full onset; IC50 210 nM). Scalaradial inhibited TRPM7 with less potency (IC50 760 nM) but failed to inhibit CRAC, TRPM4, and TRPV1 currents in whole-cell patch clamp experiments. Scalaradial's effect on TRPM2 channels was shown to be independent of its well-known ability to inhibit secreted phospholipase A2 (sPLA2) and its reported effects on extracellular signal-regulated kinases (ERK) and Akt pathways. In addition, scalaradial was shown to inhibit endogenous TRPM2 currents in a rat insulinoma cell line (IC50 330 nM). Based on its potency and emerging specificity profile, scalaradial is an important addition to the small number of known TRPM2 inhibitors.


Assuntos
Homosteroides/farmacologia , Sesterterpenos/farmacologia , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Homosteroides/química , Humanos , Estrutura Molecular , Fosfolipases A2/efeitos dos fármacos , Ratos , Sesterterpenos/química
14.
J Biomol Struct Dyn ; 35(9): 1936-1949, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27355444

RESUMO

Bioactive compounds were isolated from Clematis gouriana Roxb. ex DC. The compounds were separated, characterized, the structures elucidated and submitted to the PubChem Database. The PubChem Ids SID 249494134 and SID 249494135 were tested against phospholipases A2 (PLA2) of Naja naja (Indian cobra) venom for PLA2 activity. Both the compounds showed promising inhibitory activity; computational data also substantiated the results. The two compounds underwent density functional theory calculation to observe the chemical stability and electrostatic potential profile. Molecular interactions between the compounds and PLA2 were observed at the binding pocket of the PLA2 protein. Further, this protein-ligand complexes were simulated for a timescale of 100 ns of molecular dynamics simulation. Experimental and computational results showed significant PLA2 inhibition activity.


Assuntos
Clematis/química , Inibidores de Fosfolipase A2/isolamento & purificação , Fosfolipases A2/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Animais , Biologia Computacional , Ligantes , Simulação de Dinâmica Molecular , Inibidores de Fosfolipase A2/química , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligação Proteica , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/enzimologia
15.
Lipids Health Dis ; 15(1): 213, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27938411

RESUMO

BACKGROUND: Interactions between adipocytes and macrophages are associated with metabolic disorders. Production of pro-inflammatory mediators and the release of free fatty acids (FFAs) increase when these cells are co-cultured; butyrate significantly diminishes these effects by suppressing both the macrophage inflammatory and adipocyte lipolysis pathways. Butyrate is known to up-regulate the expression of prostaglandin E2 (PGE2). Therefore, we hypothesized that PGE2 is associated with the suppression of lipolysis by butyrate in co-culture. METHODS: Using contact or transwell co-culture methods with differentiated 3T3-L1 adipocytes and RAW264.7 macrophages, we investigated the effects of butyrate on the release of PGE2 into the medium and on lipolysis in adipocytes. To elucidate the underlying mechanism, we examined the effects of butyrate on cyclooxygenase-2 (COX2) and phospholipase A2 (PLA2) in co-cultured cells, and cyclic adenine monophosphate (cAMP) and protein kinase A type 1-α regulatory subunit (PRKAR1A) in co-cultured adipocytes. Silent interfering (si)RNA targeting of G-protein-coupled receptor (GPR)41 and 109A was employed to examine the effect on lipolysis in TNF-α-stimulated adipocytes. RESULTS: Co-culture increased PGE2 release into the medium, compared with cells cultured separately. Butyrate significantly increased PGE2 production. Co-culture elevated COX2 expression in macrophages and adipocytes, and butyrate further enhanced this effect. Co-culture enhanced cytosolic PLA2 activity in macrophages, which was further enhanced by butyrate. As for lipolysis, co-culture increased the release of FFAs and free glycerol into the medium, whereas butyrate (and to a lesser extent, PGE2) suppressed FFAs and free glycerol release. An inhibition study using a prostaglandin E receptor 3-selective antagonist suggested that approximately 40% of the suppressive effect of butyrate depends on the PGE2-mediated pathway, whereas 60% depends on a non-PGE2-mediated pathway. Co-culture increased cAMP and PRKAR1A levels in adipocytes, whereas butyrate restored the levels to those of the control. Similarly, in TNF-α-stimulated adipocytes, butyrate reduced FFAs and free glycerol release. siRNA inhibition of GPR41 and GPR109A suggested that the GPR109A-mediated pathway predominates, but the GPR41-mediated pathway also regulates the effect of butyrate on lipolysis in TNF-α-stimulated 3T3-L1 cells. CONCLUSIONS: Butyrate attenuates lipolysis in adipocytes co-cultured with macrophages via non-PGE2-mediated and PGE2-mediated pathways.


Assuntos
Adipócitos/metabolismo , Butiratos/farmacologia , Lipólise/efeitos dos fármacos , Macrófagos , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Técnicas de Cocultura , Ciclo-Oxigenase 2/efeitos dos fármacos , Dinoprostona , Camundongos , Fosfolipases A2/efeitos dos fármacos , Células RAW 264.7
16.
J Photochem Photobiol B ; 164: 30-35, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27639122

RESUMO

2-[Tris(oleoyloxymethyl)methylamino]-1-ethane sulfonic acid (TES trioleate) is an inhibitor of phospholipase A2 (PLA2), which hydrolyzes cell membrane phospholipids to produce arachidonic acid (AA) and lysophospholipids (LysoPLs). Here, we investigated the protective effects of TES trioleate on cell damage caused by ultraviolet A (UVA) light and reactive oxygen species (ROS). Pre-incubation with 250-1000µM TES trioleate resulted in concentration-dependent protection from UVA-induced damage in HaCaT cells. Additionally, 25-1000µM TES trioleate provided protection against H2O2 in a concentration-dependent manner. In human erythrocytes treated with 1O2, 10-100µM TES trioleate showed concentration-dependent protective effects, similar to but stronger than the controls, 4-BPB and lipophilic antioxidant (+)-α-tocopherol at 100µM. TES trioleate did not have detectable radical scavenging activity. Moreover, compared with (+)-α-tocopherol and rutin, TES trioleate showed low ROS scavenging activity. Thus, although TES trioleate showed cell protective effects against UVA, H2O2, and 1O2-induced damages, these effects were not caused by the scavenging ability of the radical or ROS. Finally, pretreatment of HaCaT cells and human erythrocytes with l-α-lysophosphatidylcholine produced by PLA2 promoted increased cell damage at low concentrations. Thus, the protective effects of TES trioleate on cellular damage by UVA and ROS may be associated with inhibition of PLA2-dependent cell damage rather than ROS scavenging.


Assuntos
Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trometamina/análogos & derivados , Raios Ultravioleta , Linhagem Celular , Humanos , Trometamina/farmacologia
17.
J Med Chem ; 59(9): 4403-14, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27087127

RESUMO

The development of inhibitors for phospholipase A2 (PLA2) is important in elucidating the enzymes implication in various biological pathways. PLA2 enzymes are an important pharmacological target implicated in various inflammatory diseases. Computational chemistry, organic synthesis, and in vitro assays were employed to develop potent and selective inhibitors for group VIA calcium-independent PLA2. A set of fluoroketone inhibitors was studied for their binding mode with two human cytosolic PLA2 enzymes: group IVA cPLA2 and group VIA iPLA2. New compounds were synthesized and assayed toward three major PLA2s. This study led to the development of four potent and selective thioether fluoroketone inhibitors as well as a thioether keto-1,2,4-oxadiazole inhibitor for GVIA iPLA2, which will serve as lead compounds for future development and studies. The keto-1,2,4-oxadiazole functionality with a thioether is a novel structure, and it will be used as a lead to develop inhibitors with higher potency and selectivity toward GVIA iPLA2.


Assuntos
Cálcio/química , Inibidores de Fosfolipase A2/química , Fosfolipases A2/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Inibidores de Fosfolipase A2/farmacologia , Relação Estrutura-Atividade , Sulfetos/química
18.
Eur Arch Psychiatry Clin Neurosci ; 266(7): 607-18, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26661385

RESUMO

Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hipocampo/enzimologia , Compostos de Lítio/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfolipases A2/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Hipocampo/efeitos dos fármacos , Compostos de Lítio/administração & dosagem , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fosfolipases A2/genética , Ratos , Ratos Wistar
19.
Izv Akad Nauk Ser Biol ; (1): 85-9, 2015.
Artigo em Russo | MEDLINE | ID: mdl-25872404

RESUMO

The lipid-lowering, fibrinolytic, and anticoagulant effects of leucine-containing glyprolines, Pro-Gly-Pro-Leu and Leu-Pro-Gly-Pro, were studied in vitro in the blood of patients with disorders of lipid metabolism. The lipid-lowering impact of glyprolines and their ability to reduce the polymerization and to increase the depolymerization of fibrin in human blood were found. Possible mechanisms of lipolytic action of peptides by means of modulation of the lipid-dependent phospholipase A2 were proposed.


Assuntos
Hiperlipidemias/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Peptídeos/administração & dosagem , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Fibrinolíticos/administração & dosagem , Humanos , Hiperlipidemias/sangue , Lipídeos/sangue , Fosfolipases A2/sangue , Fosfolipases A2/efeitos dos fármacos
20.
Arch Pharm Res ; 38(10): 1913-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25899996

RESUMO

To investigate the inhibitory effect of acteoside on the process of exocytosis induced by melittin, we measured Ca(2+) mobilization, arachidonic acid (AA) release and catecholamine exocytosis in PC12 chromaffin cells. Melittin significantly increased the intracellular Ca(2+) mobilization via receptor-operated calcium channel but not the intracellular Ca(2+) release. It caused AA release via activation of Ca(2+)-dependent phospholipase A2 (PLA2) and catecholamine secretion in a dose-dependent manner. Acteoside dose-dependently inhibited the release of AA and intracellular Ca(2+) mobilization induced by melittin. Acteoside reduced the catecholamine release and raised the amount of intracellular chromogranin A which is co-released with catecholamine from melittin-stimulated PC12 cells. Taken together, our results suggest that acteoside could suppress the exocytosis via inhibition of Ca(2+)-dependent PLA2 and extracellular Ca(2+) influx in PC12 cells stimulated by melittin.


Assuntos
Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Glucosídeos/farmacologia , Meliteno/farmacologia , Fenóis/farmacologia , Animais , Ácido Araquidônico/metabolismo , Canais de Cálcio/metabolismo , Catecolaminas/metabolismo , Cromogranina A/metabolismo , Relação Dose-Resposta a Droga , Glucosídeos/administração & dosagem , Células PC12 , Fenóis/administração & dosagem , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...